## WELCOME



# BIOCHAR STUDY TOUR



### Agenda

IBI Overview
Industry Overview
SWOT
What is holding the industry from growth?
Current & Future Markets
Positioning Biochar





#### **IBI's Mission**

To provide a platform for fostering stakeholder collaboration, good industry practices, and environmental and ethical standards to support biochar systems that are safe and economically viable.

#### **IBI's Vision**

One billion tons of biochar produced per year within 50 years.





#### IBI Biochar Study Tours

Rationale: To shine a light on the 'bright spots' of biochar production and/or use in order to help replicate such models around the world.

#### Future potential focus areas include:

- Wastewater treatment
- Mine land reclamation
- Livestock farming
- Specific cropping scenarios
  - vineyards,
  - orchards,
  - coffee





- Increasing number of production technologies at many different scales Much more biochar available now for trials Many different end uses for biochar **Enormous amount of** underutilized biomass available
  - Low market awareness Lack of comprehensive, unbiased educational materials for specific end uses Many producers do not fully understand the nuances of their char Standards (IBI & EBC) are not well adapted yet Few labs with experience in characterization Few ROI examples Lack of investment capital Price of biochar makes value prop for Ag difficult
- **Developing world** economics are more enticing for biochar production & use **Biochar production** provides many cobenefits which can help reduce cost of biochar and attract investment capital **Renewable Energy**  Waste Mitigation **Increasing regulations** restricting **Organics to** landfills **Air Pollution Toxic Soils**  GHG Biochar can be framed in many different ways
- benefits Not all biochars are the same Quality control Lessons learned not being communicated well Over emphasis on sequestration can be off-putting Patents Nay-sayers

**Overselling biochar** 

## Technology is no longer

#### a constraint



### Supply is no longer the issue

In fact in some places we have a glut

June 8: I have 21 m lbs of feedstock, we can finance equipment if we have purchase orders. Need to find agricultural users to buy biochar.

June 6: We are currently running every day and producing 2 to 3 tons of biochar a day - ultimately, that production level will be 10 to 12 tons per day.



June 5: We handle 700T of biomass a day and we'd like to find markets for large quantities of biochar.

## So what is holding biochar back?

#### 1. Economics



- Developed vs developing world economics
- Price of biochar makes value proposition challenging
  - Few concrete examples of ROI in agriculture
- Lack of investment capital
- Producers that don't take advantage of all by-products
- No price on carbon (yet)
  - Biochar not an accepted offset/sequestration product (yet)

## So what is holding biochar back?

#### 2. Education



- Consumer awareness is very low
- Lack of comprehensive, unbiased biochar educational materials for producers/sellers and different types of end users
- Massive oversimplification/generalization of what biochar is & benefits it can provide
- Sellers often don't understand their particular biochar
- Framing biochar for end users
- Over emphasis on sequestration can turn off some potential consumers

# So what is holding biochar back? 3. MARKETS!!



- Large scale
- Repeatable
- Non-seasonal
- Economically viable
- Legal (in some cases)



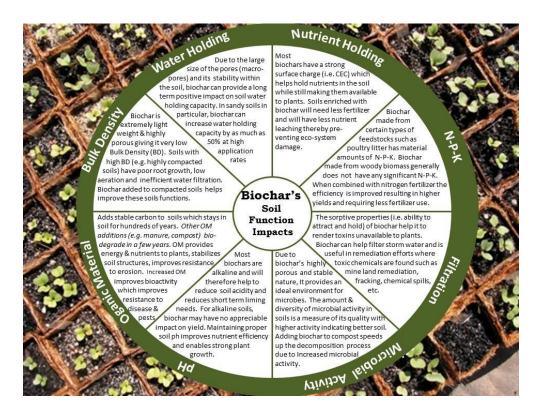
# **Biochar Markets**

## Positioning Biochar

Beyond Carbon Sequestration



## Positioning Biochar


|   |                       | Charcoal                                        | Biochar                                                               | Activated Carbon                                                                            |  |
|---|-----------------------|-------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--|
|   | Feedstock             | Hardwood,<br>sawdust<br>+ Binding Agents        | Ag, forestry & other organic materials/waste                          | Coconut shells, peat, coal, petroleum pitch                                                 |  |
|   | Common<br>Uses        | Fuel (Cooking)                                  | Soil Amendment Remediation Filtration Binding Agent (livestock)       | Filtration Odor Control Remediation Binding Agent (humans)                                  |  |
|   | Relevant<br>Qualities | Burnability<br>Low smoke                        | Adsorption/Porosity<br>CEC<br>Sequestration                           | Adsorption                                                                                  |  |
|   | Cost                  | \$ - \$\$                                       | \$\$                                                                  | \$\$\$                                                                                      |  |
|   | Production            | 300 – 400C<br>Slow Pyrolysis;<br>Kiln           | 400 – 800C<br>Slow Pyrolysis;<br>Kiln; Gasification<br>HTC, Microwave | Pyrolyzed at 600 – 900C + activated at 250C OR Chemically impregnated & cooked @ 450 – 900C |  |
| A | Carbon<br>Footprint   | Carbon Neutral:<br>May lead to<br>Deforestation | Carbon Negative (in many situations)                                  | Carbon Positive                                                                             |  |

## Positioning Biochar

Biochar is not a fertilizer!

# Soil "Condilizer"!

**Fertilizer** 



**Improves Yield** 

**POLLUTES** 

AIR: smog, GHG

WATER: eutrophication, kills aquatic life, increases algae

SOIL: acidification, mineral depletions, kills beneficial soil microbes

#### Comparison of biochar with other amendments

| Impact                             | Biochar               | Peat<br>Moss        | Com-<br>post          | Coir                  | Perlite                 | Vermi-<br>culite                               |
|------------------------------------|-----------------------|---------------------|-----------------------|-----------------------|-------------------------|------------------------------------------------|
| Permeability                       | M-H                   | L-M                 | X                     | X                     | Н                       | Н                                              |
| Water Retention                    | Н                     | VH                  |                       |                       | L                       | Н                                              |
| Improves Soil Aeration             | x                     | x                   | Х                     | x                     | х                       | x                                              |
| Increase Organic Material          | х                     | х                   | Х                     | x                     |                         |                                                |
| Reduces Nutrient<br>Leaching       | X                     | X                   |                       | Х                     | Х                       | X                                              |
| Provides Sterile Growing<br>Medium |                       | х                   |                       | x                     | X                       | х                                              |
| рН                                 | Alkaline              | 3.6 – 4.2           | varies                | 5.2 – 6.8             | 7                       | neutral                                        |
| Longevity                          | Decades++             | 1 yr                | 1 yr                  | Several<br>years      | Decades++               | Decades++                                      |
| GHG emissions                      | Decreases             | Increases           | Neutral               | Neutral               | Neutral –<br>Increases? | Neutral –<br>Increases?                        |
| Nutrient Value                     | varies                | minimal             | varies                | varies                | None                    | None                                           |
| Eco-system impact from production  | Neutral -<br>Positive | Negative<br>(mined) | Neutral -<br>Positive | Neutral -<br>Positive | Negative<br>(mined)     | Negative<br>(mined)<br>May contain<br>asbestos |
| Source                             | Waste<br>biomass      | Peat bogs           | Waste<br>biomass      | Waste<br>biomass      | Volcanic<br>ash         | Mined silica                                   |

# Questions?





