
Biochar for Environmental Management

Biochar is the carbon-rich product which occurs when biomass (such as wood, manure or crop 
residues) is heated in a closed container with little or no available air. It can be used to improve 
agriculture and the environment in several ways, and its persistence in soil and superior nutrient-
retention properties make it an ideal soil amendment. In addition to this, biochar sequestration, 
in combination with sustainable biomass production, can be carbon-negative and therefore used 
to actively remove carbon dioxide from the atmosphere, with potentially major implications for 
mitigation of climate change. Biochar production can also be combined with bioenergy produc-
tion through the use of the gases that are given off in the pyrolysis process.

The fi rst edition of this book, published in 2009, was the defi nitive work reviewing the expanding 
research literature on this topic. Since then, the rate of research activity has increased at least 
ten-fold, and biochar products are now commercially available as soil amendments. This second 
edition includes not only substantially updated chapters, but also additional chapters on: envi-
ronmental risk assessment; new uses of biochar in composting and potting mixes; a new and 
controversial fi eld of studying the effects of biochar on soil carbon cycles; traditional use with 
very recent discoveries that biochar was used not only in the Amazon but also in Africa and Asia; 
changes in water availability and soil water dynamics; sustainability and certifi cation. The book 
therefore continues to represent the most comprehensive compilation of current knowledge on 
all aspects of biochar.
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Preface

At the writing of the fi rst edition, the term 
‘biochar’ was hardly known even in scientifi c 
circles that specialize in bioenergy, waste 
management, site remediation, climate 
change mitigation or soil fertility. This has 
changed over the past fi ve years and scientifi c 
inquiry has increased remarkably, while the 
fi rst commercial biochar products are found 
on shelves in retail stores. This book not only 
captures the recent advances made in our 
understanding of biochar properties, behav-
iour and effects on agriculture and the envi-
ronment, but also develops fundamental 
principles and frameworks of biochar science 
and application. 

This book serves as an introduction to 
biochar for students, scholars and lay per-
sons, as well as a comprehensive textbook for 
anyone who wants to gain a deeper under-
standing of biochar. At the same time, it high-
lights new insights at the frontier of biochar 
science, develops new concepts for its investi-
gation and use, and identifi es knowledge gaps 
and future research needs. It is intended to 
provide essential information available to date 
to land use planners, home owners, trainers, 
policy makers, regulatory agencies, project or 
business developers.

The interest in biochar is constantly shift-
ing between stakeholders, since in spite of its 
ancient roots biochar is a relatively new 
industry and topic of science for an increas-
ing and broader group of people. Regional 
and local groups have been founded in many 
countries, and the international networks of 

scientists, industry, project developers and 
policy makers interested in biochar have 
advanced the discourse and sustainable 
development of biochar under the auspices of 
the International Biochar Initiative (IBI). 
These networks have advanced frameworks 
for commercializing biochar such as setting 
standards of what safe biochar is and how it 
can be used sustainably to address environ-
mental issues while recognizing social and 
economic constraints. This book contributes 
to rigorous scientifi c inquiry and hopes to 
motivate development of realistic and sus-
tainable biochar application. It attempts to lay 
out the complexity of biochar systems, cover-
ing both the detailed science as well as the 
broad developmental and policy picture, and 
develop concepts for further inquiry and real-
istic and achievable implementation.

The book is divided into fi ve main areas: 
(i) History and fundamentals of biochar 
investigation, production and use; (ii) Basic 
physical and chemical properties of biochar 
and their classifi cation; (iii) Persistence, 
changes and movement of biochar in the 
environment; (iv) Plant productivity and 
environmental processes that are affected by 
biochar including soil biota, nutrient and car-
bon transformations and movement, green-
house gas emissions, soil water and pollutant 
dynamics in soil (such as organic pollutants, 
heavy metals, herbicides); (v) Implementation 
of biochar that requires assessments of bio-
char contents, its use in commercial products 
and as part of wider biochar systems, green-
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house gas accounting, certifi cation, econom-
ics and commercialization.
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Foreword

The climate problem is now extremely large. 
Each year, humanity disgorges 43 billion 
tonnes of CO2 into the atmosphere, a volume 
25 per cent greater than just a decade ago. 
Scientists have calculated a carbon budget 
for Earth. If we wish to have a 75 per cent 
chance of keeping warming to less than 2 
degrees, we can emit just 1,000 billion tonnes 
of CO2 over the fi rst half of this century. Yet 
our carbon emissions had grown so fast that 
by 2013 we had already used almost 40 per 
cent of that budget. At that rate, we’ll be out 
of budget by 2028. So, the time we have to 
address the climate crisis is limited, and the 
remaining years of this decade are particu-
larly critical. Just 16 months from now, in 
December 2015 in Paris, humanity will face 
a tough challenge – developing a global treaty 
suffi cient to deal with the climate crisis. 
Following the failure of our previous attempt 
in Copenhagen, many are sceptical that it 
will be a success. In any case, many scientists 
argue that a treaty, if agreed, will come too 
late to avoid profound climate disruption. 
Already, our planet is warming at a rate con-
sistent with the worst case scenarios devel-
oped by the Intergovernmental Panel on 
Climate Change. Yet, with economic growth 
and the thirst for energy in China and India 
seemingly unstoppable, reducing the burning 
of fossil fuels is a task of the utmost diffi culty. 
Moreover, progress cannot be made at the 
cost of our food or energy security. What is 
needed in this twenty-fi rst century of ours 
are solutions that deal with several of our 

major problems at once. And they must be 
deliverable quickly, and at a scale able to 
make a real difference.

This book, I believe, provides the basic 
information required to implement the single 
most important initiative for humanity’s envi-
ronmental future. The biochar approach pro-
vides a uniquely powerful solution: it allows 
us to address food security, the fuel crisis and 
the climate problem, and all in an immensely 
practical manner. Biochar is both an extremely 
ancient concept and one very new to our 
thinking. Amazonian Indians used it to pro-
duce the Terra Preta soils of the Amazon 
Basin, which, 1000 years after their creation, 
remain more fertile than surrounding lands. 
Despite its benefi ts, few farmers living today 
consider producing it. Worse, our political 
debates about climate change continue in 
ignorance of it, while industries that could 
benefi t immensely have only taken the small-
est fi rst steps in developing it at scale. 

The key element in the biochar technolo-
gies is charcoal-making, which involves the 
heating of organic matter in the absence of 
oxygen. Rather than a single technology, bio-
char is a common thread running through 
various technological approaches, which can 
be varied to emphasize a particular outcome 
or opportunity. This book therefore describes 
a series of innovations whose products and 
outcomes are myriad and benefi cial. Yet, it 
goes much further than that, for this work is 
essentially a ‘how to’ manual of biochar, pro-
viding expert analyses on biological, technical, 
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economic, political and social aspects of the 
approach. There are many important prod-
ucts of the charcoal-making processes, includ-
ing synthetic gas that can be used to generate 
electricity, a substitute for diesel fuel and the 
charcoal itself.

One of the most important aspects of bio-
char is the scale at which it can be deployed. If 
we turned all of the world’s annual production 
of forestry and agricultural waste into biochar, 
and stored the carbon, we’d remove around 4 
gigatonnes of CO2 from the atmosphere. This 
makes biochar production potentially one of 
the most effective engines atmospheric cleans-
ing we possess. Indeed, it is one of the fi nalist 
technologies in the Virgin Earth Challenge, 
the world’s richest prize, which is aimed at 
fostering technologies that are capable of pull-
ing a gigatonne or more of carbon out of the 
atmosphere annually. 

Among the most valuable outcomes of 
the application of the biochar technologies 
are greatly increased economic effi ciency in 
agriculture, enhanced crop yields and slowing 
the return to the atmosphere of carbon cap-
tured by plants. The result is diverse and 
clean energy supplies, more food per unit of 
input and a chance at climate security. In 
simple terms, this is what the biochar revolu-
tion offers us. The biochar technologies 

described in this volume are potentially 
worldwide in their applicability. Grain pro-
duction and many other forms of agriculture, 
livestock production, forestry and even the 
disposal of human waste will, I’m convinced, 
be profoundly transformed by the processes 
described in these pages, and the impact will 
be both swift and radical. The driver, at least 
initially, is likely to be the climate crisis. 

Approximately 8 per cent of all atmos-
pheric CO2 is absorbed by plants each year. If 
just a small proportion of the carbon captured 
by plants can be pyrolysed and transformed 
into charcoal, humanity’s prospects will be 
much brighter, for this will buy us time as we 
struggle to make the transition to a low emis-
sions economy. With its careful evaluation of 
every aspect of biochar, this book represents 
a cornerstone of our future global sustain-
ability. I’m convinced that its message is every 
bit as important as that of Rachel Carson’s 
Silent Spring, and potentially every bit as 
politically powerful as Al Gore’s An 
Inconvenient Truth. If it fi nds a wide enough 
readership, it will change our world forever, 
and very much for the better.

Tim Flannery
Melbourne
August 2014
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Biochar for environmental management: 
an introduction

Johannes Lehmann and Stephen Joseph

What is biochar?

Biochar is the product of heating biomass in 
the absence of or with limited air to above 
250ºC, a process called charring or pyrolysis 
also used for making charcoal (Chapter 3). 
The material distinguishes itself from char-
coal or other carbon (C) products in that it is 
intended for use as a soil application or 
broader for environmental management. In 
some instances, the material properties of 
biochar may overlap with those of charcoal as 
an energy carrier, but many types of biochar 
do not easily burn and charcoals are typically 
not made to address soil issues (Nomenclature 
in Box 1.1). An important defi ning feature of 
biochars, similar to charcoal, is a certain level 
of organic C forms, called fused aromatic 
ring structures (Chapter 6). These structures 
are formed during pyrolysis and are key to 
biochar properties with respect to mineraliza-
tion (Chapter 10) or adsorption (Chapter 9). 
Therefore, biochar is typically enriched in C 
(Figure 1.1), and even more in phosphorus 
(P) or other metals such as calcium (Ca) or 
magnesium (Mg) and sometimes even nitro-

gen (N). The chemical properties of the 
organic C structure of biochars are funda-
mentally different from those of the material 
that the biochar was produced from and 
depleted in oxygen (O) and hydrogen (H). In 
contrast, the macro-morphological character-
istics of biochars typically resemble those of 
the starting material, which means that it typ-
ically looks the same, apart from its black 
color. The intended use as a soil amendment 
also requires that biochars do not contain 
harmful levels of heavy metals or organic

Figure 1.1 Conversion effi ciency of biomass, 
C, N and P during pyrolysis (data from 
Enders et al (2012); typical losses followed by 
range in brackets)
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2 BIOCHAR FOR ENVIRONMENTAL MANAGEMENT

contaminants (IBI, 2013), in keeping with 
related efforts to make composts and other 
soil amendments safe for soil. Despite these 
common criteria, it would be wrong to con-

clude that biochar is a narrowly defi ned mate-
rial. In fact, biochars can have very different 
properties, which have to be recognized, as 
discussed throughout this book.

Box 1.1 Nomenclature of biochar and related materials in 
comparison to pyrogenic C structures

Johannes Lehmann, Joseph J. Pignatello, Michael Bird, Stephen Joseph

The following nomenclature for biochar and related terms has been adopted in this book and may 
provide guidance for achieving greater clarity. In some instances, clarity in conversation may also improve 
conceptualization and scientifi c advances, which is intended to promote understanding of biochar proper-
ties and its behavior in the environment. 

Biochar: Biochar is the solid product of pyrolysis, designed to be used for environmental management. 
IBI (2013) defi nes biochar as: ‘A solid material obtained from thermochemical conversion of biomass in 
an oxygen-limited environment. Biochar can be used as a product itself or as an ingredient within a 
blended product, with a range of applications as an agent for soil improvement, improved resource use 
effi ciency, remediation and/or protection against particular environmental pollution and as an avenue for 
greenhouse gas (GHG) mitigation.’ In addition, to be recognized as biochar according to IBI (2013) or 
Delinat (2012), the material has to pass a number of material property defi nitions that relate both to its 
value (e.g., H/Corg ratios relate to the degree of charring and therefore mineralization in soil) and its safety 
(e.g., heavy metal content). This publication uses the term biochar even when citing publications that use 
other terms but clearly refer to the use of such materials in the context defi ned for biochar.

Hydrochar: Hydrochar is the solid product of hydrothermal carbonization (HTC) or liquefaction (some-
times referred to as HTC material), and is distinct from biochar due to its production process and proper-
ties (Libra et al, 2011). It typically has higher H/C ratios (Schimmelpfennig and Glaser, 2012) and lower 
aromaticity than biochar as well as little or no fused aromatic ring structures. Hydrochar is not covered in 
this publication and only occasionally discussed in comparison to biochar.

Pyrogenic Carbonaceous Material (PCM): PCM is introduced here as the umbrella term for all 
materials that were produced by thermochemical conversion and contain some organic C, such as charcoal, 
biochar, char, black carbon, soot, activated carbon. The term refers to the material and not the C atom.

Char: Char is defi ned for the purpose of this publication as the material generated by incomplete 
combustion processes that occur in natural and man-made fi res.

Charcoal: Charcoal is produced by thermochemical conversion from biomass (mainly but not exclu-
sively wood) for energy generation. The term is sometimes used in the context of other uses, e.g., medi-
cine, fi ltration, separation etc. If processed further by any form of activation, use of the term ‘activated 
carbon’ is proposed.
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Activated carbon: Activated carbon denotes a PCM that has undergone activation, for example by 
using steam or additions of chemicals. It is used in fi ltration or separation processes, sometimes in 
restoration and for specialized experiments in soil (competition, inoculation, etc). ‘Carbon’ in this 
context should not be abbreviated to ‘C’, since it does not refer to the C atom in activated carbon, but 
to the material (which also contains other atoms than C). The acronym ‘AC’ for activated carbon will 
be used in this publication only if needed repeatedly, but the preferred spelling is ‘activated carbon’. 
Clarifi cation is needed in those instances where biochars were modifi ed after production for which 
some sources use the term ‘activation’. Such treatment of biochars is typically ill defi ned and it should 
be explained in detail what ‘activation’ of biochars means in a particular study. The use of the term 
‘activated biochar’ is discouraged.

Black carbon: The term black carbon (carbon spelled out) is extensively used in the atmospheric, 
geologic, soil science and environmental literature to refer to PCMs dispersed in the environment from 
wildfi res and fossil fuel combustion. The term should be taken to refer to the entire material, not just the 
fused ring fraction or the C atom. The use of this term is discouraged (or be used only if absolutely neces-
sary and in the context described here), to avoid confusion with ‘black C’, which is defi ned below.

Soot: Soot is a secondary PCM and a condensation product (Chapter 3). Chars, charcoal, biochars, black 
carbons (and, to a limited extent, also activated carbon) may contain soot, but soot can also be identifi ed 
as a separate component resulting from gas condensation processes.

Ash: Ash is the operationally defi ned fraction of biomass or PCM (according to ASTM D1762-84) and typi-
cally includes inorganic oxides and carbonates (Enders et al, 2012). For the purposes of this publication, the 
term does not describe the solid residue of combustion which commonly contains some residual organic C.

When referring to the C atoms of the PCM, the letter C should be used as in ‘pyrogenic C’ or ‘black C’. 
A selection of terms referring to C forms in PCM relevant to this publication includes:

• ‘Black C’ spelled with ‘C’ and not ‘carbon’ refers to the C atom, and not to the material that also 
contains H, O, N and ash minerals (Figure 1.2). ‘Black C’ should not be abbreviated to BC as this can 
be confused with biochar (which is in some publications abbreviated to BC; the acronym BC is there-
fore not used here).

• ‘Pyrogenic C’ (abbreviated to PyC after fi rst use) is synonymous with black C. It should be used 
preferentially to ‘black C’.

• PyC (or black C) should refer to the (non-inorganic) C atoms that have undergone pyrogenic or 
thermal transformation, and by this defi nition only include C present in fused rings, including C on 
surfaces of fused aromatic C that may also bind to other atoms than C such as C-O/N, non-
protonated C and protonated C. In this publication, the term does not include non-transformed C 
present in residual carbohydrates or lignin structures, or in tars, or in functional groups bound to 
fused aromatic C such as carboxyl groups. Different methods to quantify PyC (or black C) typically 
attempt to capture this C fraction (Chapter 24), but do so with varying success or intentionally 
capture a portion of it (e.g., only the fused aromatic C without the surface C). When referring to a 
certain analytically defi ned fraction, the method should be stated in conjunction with the term PyC 
(e.g., PyC quantifi ed by CTO-375).
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4 BIOCHAR FOR ENVIRONMENTAL MANAGEMENT

• ‘Total Organic Carbon’ (abbreviated TOC) refers to the entire organic C component of any material, 
and is similarly defi ned for PCMs (Chapter 8), including all thermally altered organic C as well as 
remaining untransformed organic C. ‘Total inorganic carbon’ (abbreviated TIC) mainly includes 
carbonate and possibly other compounds such as oxalates (Figure 1.2). 

• In some cases ‘soot C’ is appropriate to indicate the C atom properties of soot (which is a secondary 
PCM as defi ned above).

Figure 1.2 Illustrative sketch of a possible distribution of different C forms and other atoms in 
biochar (component and acronyms explained in text)

A brief history of biochar research and application

Valuing biochar-rich soils and the concept of 
adding biochar to soil and in potting mixes 
reaches back several centuries (Chapters 2 
and 12) and has found entry into some tradi-
tional management concepts in many regions 
worldwide (Chapter 2). Even though some 
notable research was done, the historic 
reports and scientifi c studies started as mostly 
observational and were initially in large part 
gathered from plant growth responses on for-
mer charcoal storage sites (Chapter 12). 
Biochar application was discussed in major 
agricultural textbooks (Allen, 1846) and in 
scientifi c journals (Anonymous, 1851) and 
developed into commercial products as a 
form of ‘manure’ in the mid 1800s, but with 
varying success as seen for biochar made 
from peat (Durden, 1849). By the second 
half of the nineteenth century, scientifi c stud-
ies on biochar had increased substantially, 
not the least due to Justus von Liebig’s publi-
cations (Liebig, 1852) providing quantitative 
proof combined with theoretical underpin-

ning of why biochar may improve nutrient 
availability. This interest in biochar contin-
ued into the twentieth century (e.g., Retan, 
1915; Morley, 1927), but most of the research 
and development subsequently ceased by the 
middle of the twentieth century, possibly 
trailing the development and marketing of 
inorganic fertilizers. Notable research and 
development on biochar started again in the 
1980s in Japan (Ogawa and Okimori, 2010). 
The present interest in biochar research and 
development was mainly motivated by 
research on Amazonian Dark Earths (also 
called Terra Preta de Indio; Mann, 2002; 
Marris, 2006). These soils found in the 
Amazon Basin were created by Amerindian 
populations several hundred to a few thou-
sand years before present, but maintained 
their fertility largely due to the high propor-
tion of biochar-type organic matter (Glaser 
and Birk, 2012). Even though Terra Preta 
soils do not provide a direct analogue to bio-
char management (Lehmann, 2009) and are 
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by far not the only soils containing biochar 
(Chapter 2), they can be credited for spur-
ring recent investigation into whether biochar 
can provide broader soil benefi ts in its own 
right (Glaser et al, 2002). In parallel, natu-
rally produced chars from vegetation fi res are 
becoming re-appreciated as the reason for the 
high fertility attributes of some soils such as 
those in the U.S. midwest (Mao et al, 2012).

The term ‘biochar’ was introduced only 
recently, fi rst as a term to distinguish acti-
vated carbon made from fossil fuel and acti-
vated carbon made from biomass (Bapat et 
al, 1999), and shortly thereafter to replace the 
term ‘charcoal’ as a fuel (Karaosmanoglu et 
al, 2000) and to distinguish it from coal. 
Biochar, as the term used in this book and by 
now more widely accepted globally in the 
context of a soil amendment, was introduced 
in 2006 (Lehmann et al, 2006) based on con-
versations with Peter Read.

Research on Terra Preta and on naturally 
occurring chars (often under the term black C) 
dominated the scientifi c literature on biochar-

relevant topics ten years ago, but in 2008 the 
number of articles in academic journals on 
purposeful application of biochar to soil started 
to increase (Figure 1.3). The term charcoal 
continues to be used in the context of a soil 
amendment, but with a decreasing proportion. 
The publication activity of biochar in the sci-
entifi c literature now exceeds that in the more 
established subject of compost science (Figure 
1.3). Similarly, citations of scientifi c articles on 
biochar have risen and are also higher than 
those on compost for the ten most-cited jour-
nal articles published since 2006 (on ISI Web 
of Knowledge in August 2013, http://apps.
webofknowledge.com), which may be taken as 
an indicator of scientifi c interest in biochar 
research. For a number of key scientifi c jour-
nals relevant to the soil application of biochar 
(e.g., Plant and Soil, Organic Geochemistry, 
Biology and Fertility of Soils, Australian Journal 
of Soil Research, Soil Biology and Biochemistry), 
several publications on biochar are among the 
ten most-cited articles on any subject covered 
in those journals over the past fi ve years.

Figure 1.3 Number of publications in scientifi c journals listed in the ISI Web of Knowledge (http://apps.
webofknowledge.com) with the term biochar or charcoal in the title of the article and studied in the context 
of soil management in comparison to those with compost or composting in the title (book chapters, abstracts 
and reports were not considered, nor publications that contain relevant research but where the terms were 
not used in the title; also publications with the terms black C or pyrogenic C were not considered even if 
they are relevant to soil application of biochar; the numbers reported here are therefore conservative)
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6 BIOCHAR FOR ENVIRONMENTAL MANAGEMENT

Figure 1.4 Title of the animated fi lm Waste No More, an education resource for schools developed 
by MindFuel in 2013, featuring ‘biochip’, a biochar particle who engages in a conversation with a girl 
who competes in a contest to turn waste into value. (www.wonderville.ca/asset/wastenomore)

In addition to the scientifi c output, the devel-
opment of biochar over the past years can also 
be traced by examining patents, membership 
in professional organizations, products in the 
market place or the number of interest groups. 
Groups of interested stakeholders started to 
form in 2006 and regional and national groups 
have constituted themselves by now. Patents 

were in appreciable numbers only published 
after 2010. Biochar has become part of educa-
tional curricula (Figure 1.4) and dedicated 
seminars. The connection with Terra Preta 
soils in the Amazon has provided a narrative 
that has stimulated a general interest in soils 
for those who may otherwise have less interest 
in agriculture.

Biochar as a system

In a narrow sense, biochar is the term for a 
range of materials. But actually, any benefi ts 
that the production and use of biochars is able 
to generate can often be realized only if bio-
chars are perceived as a systems approach. A 
wide variety of biomass can be used to pro-
duce a wide variety of biochar materials, each 
with its own opportunities and constraints. 
Some biomass is a valuable commodity for 

other purposes such as food and construction 
wood, or has environmental value for soil pro-
tection, shade or as wind breaks. In each spe-
cifi c circumstance, the use or abuse of biomass 
has to be critically evaluated. When the bio-
mass is heated to a point where pyrolysis 
occurs, the energy generated by the pyrolysis 
is suffi cient to continue the reaction (Figure 
1.5). However, depending on the moisture 
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Figure 1.5 Schematic of a basic biochar system

content of the biomass, the heat can be suffi -
cient to maintain the pyrolysis or require more 
energy to dry than is contained in the biomass. 
The rest of the energy that is released can be 
utilized to produce a wide variety of products, 
including energy but also other bioproducts 
such as food fl avoring. The energy can have 
various forms owing to the comparatively low 
temperature used in comparison to combus-
tion or gasifi cation, and ranges from heat and 
electricity to hydrogen, converted using micro-
organisms to ethanol or butanol or using catal-
ysis to methanol or bio-oil. Biochar is the solid 
product with about a third of the mass yet con-
taining half the C originating from the biomass 
(Figure 1.1).

For biomass input, bioenergy or bio-
product and biochar output, many different 
permutations of the system are possible 
(Chapter 26). Biomass input may not only 
include plants grown for their sole purpose 
as feedstock for pyrolysis, but also residues 
from crop production or food and energy 
processing. Therefore, the motivation or 
entry point for a biochar system can be very 

different. It is useful to distinguish between 
four broad groups of objectives: soil improve-
ment, mitigation of climate change or nutri-
ent pollution, waste management and energy 
generation (Figure 1.6).

Mitigation of

climate change,

water pollution

Energy

production

Waste

management

Soil

improvement

Social, Financial Benefits

Figure 1.6 Motivation for applying biochar 
systems
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Soil improvement
Soil improvement using biochars may target 
not only: (i) crop productivity through 
improvements of soil nutrient availability 
(Chapters 7, 15 and 18), soil physical proper-
ties and specifi cally water relations (Chapters 
5 and 19), or plant-microbe interactions 
(Chapters 13 and 14); but also (ii) soil reme-
diation (Chapters 20 and 22). The potential 
value of biochars in a particular soil is in the 
fi rst instance related to properties that can 
also be addressed by additions of other 
organic matter such as compost or manure, 
albeit with important nuances. Obviously, 
not all soil constraints can be addressed with 
biochar, and if soil properties do not con-
strain productivity and the soil is very fertile, 
then biochar additions will likely not improve 
crop yields. The fact that biochars can have 
very different properties depending on the 
material they were produced from and their 
production conditions also changes their util-
ity to address any existing soil constraints. In 
addition, biochar use in soil-less planting 
media, as compost additive, in animal feed 
with subsequent use of the manure in soil, as 
admixtures in fertilizers or in green roofs 
among others (Chapter 25) may require very 
different properties than in soil.

The ability to target biochars with very 
different attributes affords the possibility to 
design biochars for certain purposes (‘fi t for 
purpose’, ‘designer biochar’; Chapter 31) in a 
potentially very effective way. For example, 
biochars made from the same feedstock can 
have pH values of less than 4 or above 12 
(Chapter 7), one being potentially able to 
address fertility of soils with pH values that are 
either too high or too low for optimum pro-
ductivity. However, the wide variety of biochar 
materials also hampers effective communica-
tion in science, public and the market place: 
biochar does not equal biochar to the extent 
that a common term may even provide a hur-

dle. Classifi cation is therefore needed to distin-
guish different biochars (Chapter 8) and it 
may even prove prudent to develop a nomen-
clature of different subsets of biochars with 
different properties and use to facilitate com-
munication with and between stakeholders.

Soil improvement is possibly the defi ning 
feature of a biochar system. Biochar may be 
added without benefi t to soil that is already 
fertile or that has received suffi cient nutrients 
and water, if the primary objective is to 
sequester C; however, the lack of gaining 
social or fi nancial capital through soil applica-
tion may provide a disincentive. Biochar can 
also be used as a charcoal fuel, and greater 
energy gains may provide greater reductions 
in greenhouse gas emissions, if no soil bene-
fi ts can be realized (Gaunt and Lehmann, 
2008; Woolf et al, 2010). In fact, reduced 
greenhouse gas emissions from soils or greater 
plant growth may need to be achieved for a 
biochar system to have a preferable emission 
balance compared to biochar use as a char-
coal fuel (Roberts et al, 2010; Woolf et al, 
2010). Revenues from increased crop yields 
may prove critical for fi nancial viability. 

Mitigation of climate change 
and nutrient pollution
The opportunity to reduce greenhouse gas 
emissions clearly shows the need to perceive 
biochar management as a system rather than 
a material (Chapter 27). The lower minerali-
zation of biochars than the original material 
that it was produced from (Chapter 10) 
reduces the CO2 emissions from the system 
and is indeed key to climate change mitiga-
tion with biochar (Chapter 27). However, the 
CO2 capture is delivered by plants through 
photosynthesis, and whether an old-growth 
forest or a decomposing crop litter is used to 
produce biochar dramatically changes the C 
balance (Whitman et al, 2010). Not only the 
C balance, but the emissions generated or 
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reduced in the entire system determine the 
life-cycle greenhouse gas budget and include 
nitrous oxide or methane emissions from soil 
(Chapter 17) or from the decomposing bio-
mass, as well as from transportation, infra-
structure, indirect land use change and others 
(Chapter 27). Even though the technical or 
theoretical potential is substantial on a global 
scale (Woolf et al, 2010) and on par with 
many alternatives, the actual mitigation that 
will be achieved clearly depends on environ-
mental sustainability, social acceptance, tech-
nological implementation and economic 
competitiveness compared to other mitiga-
tion options. This cannot be evaluated with-
out some commercialization at a meaningful 
scale. Similar to several other agricultural C 
sequestration strategies (e.g., reducing till-
age), certain fi nancial, environmental and 
societal benefi ts can be realized through 
building soil health, which will create lasting 
value for crop productivity or clean water 
beyond C sequestration.

Efforts in mitigating excessive nutrient 
export from agricultural watersheds may 
benefi t from pyrolysis of animal manures or 
the use of appropriate biochars in reducing 
leaching of phosphates and nitrates contained 
in soil or co-applied manures (Chapter 18). 
The fi rst affords the ability to densify nutri-
ent-rich manure by drying and pyrolysing, 
with weight losses by at least one order of 
magnitude. The latter leverages the ability to 
produce biochars that can adsorb cations and 
phosphates (Chapter 9). It is not clear 
whether nutrient trading schemes will be able 
to make use of this mechanism.

Waste management
Processing of wastes is a relatively established 
use of pyrolysis, even if the use of biochar as a 
soil amendment is not widespread at present. 
The generally lower processing temperatures 
and the higher organic C contents of the solid 

residue compared to incineration or gasifi ca-
tion (Chapter 3) facilitate operations. These 
have to be weighed against longer processing 
times in the case of slow pyrolysis and different 
limitations with respect to size and type of 
installations (Chapter 4). Typically, the range 
of materials that can be processed by various 
permutations of pyrolysis technology is large 
and includes woody biomass, leaves, grasses, 
manures, sludge or crop residues (nut shells, 
pits, stones, bagasse, rice hulls, straw, etc.). 
High moisture contents can make some feed-
stocks less attractive if there is a need for net 
energy generation. The choice for a particular 
type of waste may be more limited by the 
requirement to produce a biochar that is: (i) 
safe to apply to soil; as well as (ii) appropriate 
for effectively addressing soil constraints rele-
vant at a project or regional level. Waste man-
agement is a common entry point for biochar 
systems and the economics often dictate the 
use of materials that are in need of disposal 
with low or even negative costs sometimes 
even generated at a single location (Chapters 
29 and 30). Biochar production may be an 
attractive alternative in those situations where 
no local disposal is available and the biomass 
(e.g., yard wastes, animal manures) has to be 
otherwise transported over long distances. 
Especially with efforts to close the nutrient and 
C cycle between urban and agricultural 
regions, long transportation distances are pro-
hibitive to cost-effective recycling, and it 
remains to be seen whether biochar technology 
can provide an alternative. In addition, appro-
priate management of organic wastes can help 
in the mitigation of climate change indirectly 
by: (i) decreasing methane emissions from 
landfi ll; (ii) reducing industrial energy use and 
emissions due to recycling and waste reduc-
tion; (iii) recovering energy from waste; (iv) 
enhancing C sequestration in forests due to 
decreased demand for virgin paper; and (v) 
decreasing energy used in long-distance trans-
port of waste (Ackerman, 2000).
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Energy production
Pyrolysis is a recognized and long-standing 
technology to provide energy (Chapters 3 and 
4). In addition to heat energy, pyrolysis is also 
able to generate a variety of high-value liquid 
and gaseous energy carriers. Furthermore, a 
range of products can be produced from food 
fl avoring to agrochemicals, fertilizers, cosmet-
ics, medicine, adhesives and others. In the 
early twentieth century, pyrolysis was the only 
technology to produce methanol, acetone or 
acetic acid, in addition to some liquid fuels 
(Goldstein, 1981). 

Prioritizing energy or other non-solid 
products will in most cases constitute a trade-
off to biochar production. However, from a 
life-cycle perspective, a maximization of energy 
generation may be less preferred than weighing 
soil health and environmental benefi ts against 
energy generation. It is theoretically possible 
that securing the production base by prioritiz-
ing soil fertility in a pyrolysis bioenergy project 
through biochar additions to soil will in the 
long term achieve greater energy gains than 
maximization of biomass offtake. 

Bioenergy may on its own not be able to 
satisfy the growing global energy demand 

under realistic constraints to biomass produc-
tion (Smeets et al, 2007; Kraxner et al, 2013; 
Pogson et al, 2013). But it may signifi cantly 
contribute to a future energy solution 
(Dornburg et al, 2010) and possibly be com-
petitive for distributed production of liquid or 
gaseous fuels and bioproducts. Pyrolysis in 
particular may prove capable in addressing 
constraints for many bioenergy approaches 
posed by varying availability of feedstock types, 
either between different locations or different 
times of the year, because of its versatility in 
accepting a wide variety of organic materials.

Similar to combustion technology, pyrol-
ysis technology can be operated at different 
scales, from stoves to cook meals or heat indi-
vidual homes to large bioenergy installations 
that generate liquid fuels (Chapter 4). The 
specifi c technology solution will need to vary 
considerably to meet different objectives. 
The upper limit for the scale of individual 
pyrolysis reactors will likely remain smaller 
than that of biomass combustion or fossil 
fuel-based conversion technologies (Chapter 
4). This may mean that pyrolysis may also for 
this reason be best utilized for distributed 
energy generation.

Current state of biochar science, development and 
projections: a reality check

Scientifi c activity has undoubtedly accelerated 
signifi cantly over the past fi ve years (Figure 
1.3), and the number of research publications 
can be expected to increase further in the near 
future. Even though the scientifi c output is 
currently high and much information on bio-
char is by now available, several critical knowl-
edge gaps are only being fi lled over time and 
are identifi ed in each chapter of this book. Of 
particular note is the lack of a decision tool to 
identify biochar types suitable to address cer-
tain soil constraints. While a comprehensive 

tool will only be available with a more mature 
state of science that considers all or at least 
most of the permutations of possible biochar 
properties and application, useful milestones 
can already be reached at present by identify-
ing those biochars (Chapters 7, 10, 12, 20, 
21) and biochar systems (Chapter 26) that are 
suffi ciently investigated. The analytical frame-
work is under development for characterizing 
both the material properties of biochars 
(Chapter 8) and the systems benefi ts 
(Chapters 27 and 28). In this context, scien-
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tifi c studies require careful planning to imple-
ment valid comparisons of tested biochar 
applications to either standard biochars avail-
able to the global scientifi c community, a con-
trol without adding biochar or additions of 
equivalent amounts of crop residues or com-
posts (Jeffery et al, 2015). The alternative to 
biochar applications typically is not to apply, 
but to apply a different type of organic matter, 
and the alternative to compost applications 
may not be applications of biochar on its own 
but together with compost or inorganic ferti-
lizers. On the one hand, a systems comparison 
of biochar effects on greenhouse gas emis-
sions from soil (Chapters 17, 26, 27) may 
only succeed if it is compared to applications 
of unpyrolysed biomass considering the con-
version of biomass to biochar (Chapter 3). 
Mechanistic insights, on the other hand, about 
how biochar infl uences greenhouse gas emis-
sions from soil can only be obtained using 
comparisons on the same mass or C basis. 
The modifi cation of biochars post-production 
may deserve particular attention to isolate 
specifi c effects by keeping others (e.g., pH) 
constant (Cayuela et al, 2013; Joseph et al, 
2013). Random variation between biochars 
may often not provide the necessary parame-
ter space to identify the mechanisms by which 
biochars affect soil processes (Rajkovich et al, 
2012). Such necessary refi nement of experi-
mental designs and development of clear and 
testable hypotheses require prior knowledge. 
Formulating appropriate expectations can, by 
now, build on a suffi cient body of published 
research as summarized in this publication.

Despite the impressive increase in the 
number of scientifi c studies, relevant knowl-
edge gaps may need to be addressed by 
experimentation at scale of implementation, 
notably in the area of life-cycle evaluation of 
environmental impact and specifi cally green-
house gas emissions (Chapter 27), economic 
evaluation (Chapters 29 and 30) and produc-
tion technology (Chapter 4). Commercial-

scale production and application will also 
generate the opportunities to address needs 
for longer-term data sets of biochar effects on 
crop productivity (Chapter 12) and on off-
site impacts through leaching and erosion 
(Chapters 11 and 18). Fully investigated sys-
tems at a relevant scale are a prerequisite for 
regional or global implementation.

The large variety of possible biochar 
products requires due diligence on the part of 
research to discover unintended conse-
quences (e.g., Chapters 21–23) and on the 
part of producers to comply with best man-
agement practices and ethical as well as bio-
physical standards to offer a safe product. 
The regulatory frameworks must be in place, 
both to provide incentive and point out limits. 
Only a rational and considered discussion will 
provide the assurance that biochar systems 
develop in a sustainable way.

Important questions arise whether only 
one motivation or entry point (waste man-
agement, mitigation of climate change and 
nutrient pollution, energy generation, soil 
improvement; Figure 1.6) is suffi cient to 
generate the necessary social and fi nancial 
benefi ts for a biochar system to operate sus-
tainably; or whether two or even all four value 
streams are needed. Can, for example, green-
house gas emission reductions alone be 
fi nancially viable or socially acceptable, and 
conversely, is soil improvement socially 
acceptable even if greenhouse gas emissions 
are not reduced or even increase? And if sev-
eral entry points have to generate value, how 
many opportunities exist that warrant 
research and development? In addition, 
trade-offs may occur between different value 
streams: a greater biochar production may in 
the fi rst instance reduce the amount of energy 
generated (Jeffery et al, 2015), unless soil is 
suffi ciently improved that biomass and there-
fore feedstock production increases. Many 
questions such as these have to be answered 
to develop biochar systems at a larger scale.
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